Neumann problem for one-dimensional nonlinear thermoelasticity
نویسندگان
چکیده
منابع مشابه
Propagation of Singularities in One-dimensional Thermoelasticity Propagation of Singularities in One-dimensional Thermoelasticity
The propagation of singularities for the system of homogeneous thermoelasticity in one space dimension is studied. Linear and a class of semilinear Cauchy problems are considered.
متن کاملAn ACO algorithm for one-dimensional cutting stock problem
The one-dimensional cutting stock problem, has so many applications in lots of industrial processes and during the past few years has attracted so many researchers’ attention all over the world. In this paper a meta-heuristic method based on ACO is presented to solve this problem. In this algorithm, based on designed probabilistic laws, artificial ants do select various cuts and then select the...
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملFormation of singularities in one-dimensional thermoelasticity with second sound
We investigate the formation of singularities in thermoelasticity with second sound. Transforming into Euler coordinates and combining ideas from Sideris [14], used for compressible fluids, and Tarabek [15], used for small data large time existence in second sound models, we are able to show that there are in general no global smooth solutions for large initial data. In contrast to the situatio...
متن کاملAsymptotic distributions of Neumann problem for Sturm-Liouville equation
In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Banach Center Publications
سال: 1992
ISSN: 0137-6934,1730-6299
DOI: 10.4064/-27-2-457-480